
Ebuild

Ebuild ii

COLLABORATORS

TITLE :

Ebuild

ACTION NAME DATE SIGNATURE

WRITTEN BY August 7, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Ebuild iii

Contents

1 Ebuild 1

1.1 Ebuild.guide . 1

1.2 Ebuild.guide/Introduction . 1

1.3 Ebuild.guide/Invoking EBuild . 2

1.4 Ebuild.guide/Build Files . 2

1.5 Ebuild.guide/Symbolic Constants . 4

1.6 Ebuild.guide/target . 5

1.7 Ebuild.guide/dep . 5

1.8 Ebuild.guide/Example for Constants . 6

1.9 Ebuild.guide/Including Files . 7

1.10 Ebuild.guide/Misc . 8

1.11 Ebuild.guide/Bugs - Future . 8

1.12 Ebuild.guide/History . 9

1.13 Ebuild.guide/The Authors . 9

Ebuild 1 / 9

Chapter 1

Ebuild

1.1 Ebuild.guide

This file documents version 0.97 of the Ebuild tool. You may ←↩
find

in this document:

Introduction
An introduction to automatic program building

Invoking EBuild
EBuild command-line arguments

Build Files
Buildfiles tell EBuild what to do.

Misc
What Build does and what it’s good for

Bugs - Future
Known and removed bug and the future of EBuild

History
The past of EBuild

The Authors
Who did it?

1.2 Ebuild.guide/Introduction

Introduction

EBuild is a Make clone, and it functions likewise. It is a tool that

Ebuild 2 / 9

helps you in recompiling necessary parts of a large application after
modification.

You write a file .build in the directory that contains the sources
of your project. The file contains info about which sources depend on
which, and what actions need to be performed if a module or exe needs
to be rebuilt.

EBuild checks the dates of the files to see if a source has been
modified after the last compilation, and if the source uses modules that
also have been modified, it will compile these first.

1.3 Ebuild.guide/Invoking EBuild

Invoking EBuild

EBuild can be run from any shell. If run without any arguments it
reads the file .build and performs the actions of the first target in
this file if any of the dependancies is newer.

The arguments are:

TARGET,FROM/K,FORCE/S,VERBOSE/S,NOHEAD/S,CONSTANTS/S,MESS/S:

TARGET
Build the provided target rather than the first in the build file.

FROM
Allows you to use another file than .build

FORCE
Rebuild, regardless of whether it was really necessary.

VERBOSE
Print the actions while executing them.

NOHEAD
Don’t print the heading line (version and copyright).

CONSTANTS
Print all symbolic constants and the strings they are replaced
with.

MESS
Don’t delete the action script after execution. Useful for
debugging. Note that the script file name is target dependant.

1.4 Ebuild.guide/Build Files

Ebuild 3 / 9

Build Files

Symbolic Constants

Including Files
Build files are normally named .build. This is the file EBuild ←↩

looks
for when it is run.

The syntax of build files equals that of unix-make. In general, #
precedes lines with comments, and:

target: dep1 dep2 ...
action1
action2
...

target is the resulting file we’re talking about, in most cases an
exe or module, but may be anything. Following the : you write all files
that it depends upon, most notably its source, and other modules.

The actions on the following lines are normal AmigaDos commands, and
need to be preceded by at least one space or tab to distinquish them
from targets.

bla: bla.e defs.m
ec bla quiet

This simple example will only recompile bla.e if it was modified, or
if the defs.m which it uses was modified.

If you type build with no args, build will ensure the first target
in the file to be up to date.

A longer example:

test build file

all: bla burp

defs.m: defs.e
ec defs quiet

bla: bla.e defs.m
ec bla quiet

burp: burp.e
ec burp quiet

clean:
delete defs.m bla burp

This build file is about two programs, bla and burp, of which bla

Ebuild 4 / 9

also depends on a module defs.m. An extra target clean has been added
so you can type build clean to delete all results. The clean target is
called a phony target or fake target since it’s not a real file.

The all target is a fake target, too. It’s okay to have multiple
fake targets, however, these cannot be used as dependancies.

Other dependencies and actions are easily added. For example, if
your project uses a parser generated by E-Yacc:

yyparse.m: parser.y
eyacc parser.y
ec yyparse quiet

Or incorporates macro-assembly code as often used tool module:

blerk.m: blerk.s
a68k blerk.s
o2m blerk
copy blerk.m emodules:tools
flushcache tools/blerk

1.5 Ebuild.guide/Symbolic Constants

Symbolic Constants
==================

In EBuild a symbolic constant is a string bound to a name. Those
symbols can be used in rules and actions. The string of a symbol will
be inserted wherever the symbol is found. Example:

options=IGNORECACHE LINEDEBUG DEBUG
test: test.e

ec test.e $(options)
==> ec test.e IGNORECACHE LINEDEBUG DEBUG

The following example shows how to use constants in rules:

testfile=bla
$(testfile): $(testfile).e

ec $(testfile).e

There are two special symbols in EBuild. The first, target, holds
the name of the target the current action belongs to. dep gets the name
of the first dependancy of the current target.

All except these two preset symbols may be used in rules as well as
in actions. target and dep, however, may only be used in actions. It’s
safe to have it in rules, EBuild just aborts with a message that tells
you that it doesn’t know this symbol.

Ebuild 5 / 9

target

dep

Example for Constants

1.6 Ebuild.guide/target

target

In the example below we tell EC to compile the target instead of
writing the actual name:

options=IGNORECACHE LINEDEBUG DEBUG
test: test.e

ec $(target).e $(options)

This may seem to be not too useful, but take a look at this example:

options=IGNORECACHE LINEDEBUG DEBUG
test: test.e

ec $(target) $(options)
if warn
echo "Error: compile failed"
else
echo "Compiled OK... running"
$(target)
endif

It’s largely equivalent to the old code below, but allows more.

options=IGNORECACHE LINEDEBUG DEBUG
all: test

echo "ok, running:"
test

test: test.e
ec -q test $(options)

1.7 Ebuild.guide/dep

dep

Another preset symbol is dep. It holds the name of the first
dependancy of the current target.

Again, look at this example from the introduction of symbolic
constants:

Ebuild 6 / 9

test: test.e
ec test.e IGNORECACHE LINEDEBUG DEBUG

Using dep would give this fragment:

test: test.e
ec $(dep) IGNORECACHE LINEDEBUG DEBUG

1.8 Ebuild.guide/Example for Constants

Example for Constants

This example is the one from an earlier section. We will use symbols
to generalize it.

options=IGNORECACHE LINEDEBUG DEBUG
test: test.e

ec test IGNORECACHE LINEDEBUG DEBUG
if warn
echo "Error: compile failed"
else
echo "Compiled OK... running"
test
endif

As a first step every use of the actual name test is replaced by a
constant and the compiler options are put in a symbol:

OPTIONS=IGNORECACHE LINEDEBUG DEBUG
PGM=test
$(PGM): $(PGM).e

ec $(pgm) $(OPTIONS)
if warn
echo "Error: compile failed"
else
echo "Compiled OK... running"
$(PGM)
endif

To indicate that we want to handle the target of the actions we
should rather use $(target) instead of the $(PGM). Note that both uses
are correct. We should use $(dep), too.

PGM=test
OPTIONS=IGNORECACHE LINEDEBUG DEBUG
$(PGM): $(PGM).e

ec $(dep) $(OPTIONS)
if warn
echo "Error: compile failed"
else
echo "Compiled OK... running"
$(target)

Ebuild 7 / 9

endif

Take a look at the line where the source is compiled. This line can
be used for every source since the name of the file is in the preset
symbol. If you like you could even make a symbol that holds this line:

COMPILE=ec $(dep) $(options)

1.9 Ebuild.guide/Including Files

Including Files
===============

When a file is included its contents are copied in the current build
file before it is processed. The copying is only temporary, both the
build file and the included file are left untouched.

Including is useful if you have a number of build files that all need
the same variables or share some fake targets.

To include a file the build file has to have the ’#i’ directive
followed by the name of the file to include. For example,

#i /scripts/template

includes the file /scripts/template in the current build file.
Let’s say this file contains these symbol definitions:

COMPILER=E:bin/EC
TEMP_DIR=T:

The following build file includes these definitions and uses it:

#i /scripts/template

test: test.e
$(COMPILER) $(dep)
Copy $target TO $(TEMP_DIR)

EBuild takes everything it finds in the file you include, you could
even include binary files. This is not recommended... let’s just say
the behaviour of EBuild is undefined in that case.

Since every file is included before processing the build file
constants cannot be used in the file name. The following scheme may
illustrate it:

1. Parse the build file for any include directives and include the
files.

2. Process the build file line by line and substitute constants in
rules.

3. Build target if necessary and substitute constants in actions.

Ebuild 8 / 9

1.10 Ebuild.guide/Misc

Misc

Once you get to know build, you’ll discover you can use it for more
purposes than just this. See it as an intelligent script tool.

If you want to find out the details of what build can do, read the
documentation of some unix-make, as build should be somewhat compatible
with this. What it doesn’t do for now, is:

- allow backslash at the end of a line for longer rules

When EBuild discovers a cyclic dependancy it just aborts, i.e. this
won’t be executed:

bla: defs.m blurp.m bla
ec $(target).e

since the target bla.e has the dependancy bla.e. EBuild used to
crash with an infinite loop on this one. However, it is still very easy
to make an infinite loop:

bla: defs.m blurp.m bla
ec $(target).e

defs.m: bla
ec defs.e

bla depends on defs.m which depends on bla which depends on defs.m
which depends on bla which depends on defs.m which depends on bla which
depends on defs.m ...

1.11 Ebuild.guide/Bugs - Future

Bugs / Future

Bugs: none known

Future: implement some more ’Make’ features. Top of things to do:

* Allow for recursion in symbolic constants.

* Implement some more preset symbols:

* the first file this target depends on (done)

* all but the first file this target depends on

Ebuild 9 / 9

* ...

* #include-like directive (done)

* yet another argument to list the targets available in the build
file. (minor)

1.12 Ebuild.guide/History

History

For v3.1 it was updated by Jason Hulance, to fix the bug that
executed actions in reverse order. Also he introduced the local variable
$target in actions.

EBuild was updated for v3.3a by Gregor Goldbach to support symbolic
constants and to stop on cyclic dependancies. The $target behaviour was
expanded to match other symbols: $(target) is legal, too.

1.13 Ebuild.guide/The Authors

The Authors

Wouter van Oortmerssen is the creator of E. He has studied computer
sciences and lives in England where he occasionally destroys monitors.

Jason R Hulance is an Englishman and they say he has met Wouter
several times. He coded some tools for E, most notably Explorer which
runs together with EDBG in the current E release.

Rob is just Rob.

Gregor Goldbach loves E, started studying computer sciences in
October ’97 and lives in Germany. He met Wouter but his monitor is
still running.

The current maintainer of EBuild is Gregor Goldbach. Bug reports and
suggestions should be sent to him via email
(<glauschwuffel@amt.comlink.de>), you can also find him on the E
mailing list.

This EBuild documentation is part of the Amiga E Encyclopedia which
can be found at
http://www.asta.uni-hamburg.de/users/goldi/aee/aee_1.html (online)
or on aminet/dev/e (snapshot).

	Ebuild
	Ebuild.guide
	Ebuild.guide/Introduction
	Ebuild.guide/Invoking EBuild
	Ebuild.guide/Build Files
	Ebuild.guide/Symbolic Constants
	Ebuild.guide/target
	Ebuild.guide/dep
	Ebuild.guide/Example for Constants
	Ebuild.guide/Including Files
	Ebuild.guide/Misc
	Ebuild.guide/Bugs - Future
	Ebuild.guide/History
	Ebuild.guide/The Authors

